
A numerical integrator for the two-fixed-centres problem conserving all constants of motion

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9437

(http://iopscience.iop.org/0305-4470/39/30/004)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 03/06/2010 at 04:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/30
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9437–9452 doi:10.1088/0305-4470/39/30/004

A numerical integrator for the two-fixed-centres
problem conserving all constants of motion

Tsuyoshi Inoue and Yukitaka Minesaki

Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan

E-mail: minesaki@i.kyoto-u.ac.jp

Received 1 February 2006
Published 12 July 2006
Online at stacks.iop.org/JPhysA/39/9437

Abstract
The two-fixed-centres problem describes the motion of a particle influenced by
the gravitational pull of two fixed particles. This is a well-known integrable
Hamiltonian system having three constants of motion. This paper presents
a discrete two-dimensional two-fixed-centres problem which conserves two
of these constants of motion. Moreover, this discrete system preserves the
discrete analogue of the third constant of motion. A canonical transformation
is introduced to separate the variables and remove singularities of the system.
A combination of this transformation and energy-preserving method plays an
important role in deriving the discrete system with a variable time step.

PACS numbers: 02.60.Jh, 02.70.Bf, 45.10.−b, 91.10.Sp

1. Introduction

To numerically solve a differential system, we must build a discrete model corresponding to
the original system. This process is called a discretization, among which Euler’s method and
the Runge–Kutta method are common. Generally, a discrete system given by a discretization
describes a system different from the original system. Global characteristics of the original
system, for example, existence of constants of motion, monotonicity, or boundedness,
generally disappear through discretization.

Geometric integrators concentrate on these qualitative properties, and they conserve one
or more of them exactly (up to round-off error). A number of books [6, 9] and review
papers [10, 11] have been written on the subject, and the recent advancements in this field
are remarkable. Symplectic integrators for Hamiltonian systems, symmetric integrators for
reversible systems and methods preserving energies or first integrals are well-known examples
of geometric integrators.

Symplectic integrators [6, 9, 20] are commonly used to simulate Hamiltonian systems
numerically. They conserve a global characteristic called the symplectic structure. As a result,
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these integrators have a constant of motion H̃ = H + δH1 + δ2H2 + · · · where δ is a time
step. H̃ is a discrete analogue of the Hamiltonian H. Moreover, symplectic integrators keep
the value of a discrete momentum derived through a discrete Noether’s theorem [19]. Because
of this characteristic, symplectic integrators tend to be numerically stable in the long-time
simulation.

Minesaki and Nakamura [12, 13] present discretizations of the Kepler problem which
conserve all constants of motion including the Runge–Lenz vectors. They also give a
discretization for the Stäckel system which conserves all constants of motion [14]. The
Stäckel system is a class of separable Hamiltonian systems including the Kepler problem. The
discretization consists of separation of variables and the energy-preserving method [3, 4].

The two-fixed-centres problem (2FCP) expresses the motion of a particle affected by
gravitational pull of two fixed particles. The 2FCP is a separable Hamiltonian system, and an
instance of the Stäckel system. Since the two-dimensional 2FCP has two constants of motion,
it is integrable in the sense of Liouville–Arnold. It was in 18th century when the analytical
expression of the solution was obtained by Euler. After that the 2FCP has been studied as an
important example of integrable dynamical systems [1, 18]. Varvoglis et al present a canonical
transformation that removes singularities of the canonical equation of the separated 2FCP [18].

The 2FCP is regarded as an addition of an integrable perturbation to the Kepler motion
[2]. It describes a wider range of motion including the Kepler motion. A discretization of the
2FCP which conserves its global characteristics will be a step to construct better discretizations
for more complicated dynamical systems such as the three-body problem.

In this paper we separate the variables of the two-dimensional 2FCP and remove its
singularities following the work of Varvoglis [18]. Then the discretization method presented
by Minesaki–Nakamura [14] is applied to obtain the discrete system. The discrete system
has the same two constants of motion as those of the original 2FCP. Furthermore, the discrete
system has an additional constant of motion. This is shown to be a discrete analogue of the
continuous system’s third constant of motion which has an integral form. Then we conduct
numerical experiments and observe that the discrete system remarkably approximates the
trajectory of the continuous system.

The paper is organized as follows. In section 2, separation of variables and removal of
singularities are done according to Varvoglis [18]. In section 3, the energy-preserving method
[3, 4] is applied to each term of the Hamiltonian of the separated system. As a result, the
discrete system has two constants of motion. In section 4, we discuss the constants of motion
of the discrete system in detail. In section 5, we argue a global characteristic which the discrete
system retains through discretization. This results from the existence of the two constants of
motion which have the same form as those of the continuous system. In section 6, we confirm
the effect of our discretization by a numerical experiment. Then we compare the discrete
system with a symplectic integrator.

2. Separation of variables of 2FCP

We begin with the 2FCP [15] defined by the Hamiltonian

Hc(x, y, px, py) = p2
x

2
+

p2
y

2
− α1

r1
− α2

r2
− hc, (1)

where r1 =
√

(x + 1)2 + y2 and r2 =
√

(x − 1)2 + y2. The fixed particles are at (−1, 0) and
(1, 0). We fix the value of constant hc so that

Hc(x, y, px, py) ≡ 0. (2)
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Here (x, y) is the location of the moving particle with unit mass, and px and py are conjugate
momenta. The constants α1 and α2 are expressed as α1 = 2µ and α2 = 2(1 − µ),µ ∈ [0, 1],
where the parameter µ denotes the mass ratio of the two fixed particles.

The 2FCP (1) is a separable Hamiltonian system [15] which can be integrated by using
the elliptic coordinates

ξ = r1 + r2

2
, η = r1 − r2

2
. (3)

In the elliptic coordinates (ξ, η) and the corresponding canonical momenta pξ , pη, the original
canonical variables x, y, px, py are written as

x = ξη, y = (sign y)
√

(ξ 2 − 1)(1 − η2),

px = η(ξ 2 − 1)pξ + ξ(1 − η2)pη

ξ 2 − η2
, (4)

py = (sign y)
√

(ξ 2 − 1)(1 − η2)
(ξpξ − ηpη)

ξ 2 − η2
,

where (sign y) is the sign of y. Through the canonical transformation (4), the original
Hamiltonian (1) leads to the Hamiltonian

He(ξ, η, pξ , pη) = Kξ(ξ, pξ ) + Kη(η, pη)

ξ 2 − η2
≡ 0, (5)

where Kξ(ξ, pξ ) and Kη(η, pη) are

Kξ(ξ, pξ )
def= 1

2 (ξ 2 − 1)p2
ξ + αξ − hcξ

2,
(6)

Kη(η, pη)
def= 1

2 (1 − η2)p2
η + βη + hcη

2,

respectively. Here we set the constants α = −α1 − α2 and β = α1 − α2.
We can regard the time variable t as a new canonical coordinate, so −hc conjugates to t

in an extended phase space (cf [17]). We introduce a canonical transformation

{pξ , pη,−hc, ξ, η, t} → {pξ , pη,−kc, ξ, η, s}
such that

hc → kc, kc = (ξ 2 − η2)hc, t → s, ds = dt

ξ 2 − η2
. (7)

The original Hamiltonian system with the Hamiltonian (1) is changed to

dpξ

ds
= −ξp2

ξ − α + 2hcξ,
dξ

ds
= (ξ 2 − 1)pξ , (8)

dpη

ds
= ηp2

η − β − 2hcη,
dη

ds
= (1 − η2)pη. (9)

Now the Hamiltonian system (8), (9) is separated. Each set of equations (8), (9) is considered
as the canonical equations given by the Hamiltonians Kξ and Kη, respectively. Then Kξ,Kη

are the constants of motion of the 2FCP.
Although a discretization is necessary to solve equations (8), (9) numerically, the

behaviour of the resulting discrete system is sometimes different from that of the original
Hamiltonian system because of possible overflow near singularities. The overflow occurs
near ξ = 1 and η = ±1 where the moving particle crosses the line connecting the two fixed
particles. This makes it difficult to compute the 2FCP with high accuracy.
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The Hamiltonian system (8), (9) gives the relationship

pξ = 1

ξ 2 − 1

dξ

ds
, pη = 1

1 − η2

dη

ds
, (10)

which suggests that the neighbourhood of ξ = 1 and that of η = ±1, where the overflow
occurs, are around the singularities of pξ and pη. Therefore, numerical simulation becomes
inaccurate when the particle comes around the singularities of pξ and pη.

In order to remove such singularities, we introduce the following canonical
transformations (ξ, η, pξ , pη) → (u, v, pu, pv) following the study of Varvoglis and
Vozikis [18],

ξ = cosh u, η = cos v, pξ = pu

sinh u
, pη = − pv

sin v
. (11)

Then the separated Hamiltonians Kξ and Kη lead to

Ku(u, pu)
def= Kξ(ξ(u), pξ (u, pu)) = 1

2p2
u + α cosh u − hc cosh2 u, (12)

Kv(v, pv)
def= Kη(η(v), pη(v, pv)) = 1

2p2
v + β cos v + hc cos2 v. (13)

As a result, the Hamiltonian system (8), (9) reduces to

du

ds
= pu,

dpu

ds
= −α sinh u + 2hc cosh u sinh u, (14)

dv

ds
= pv,

dpv

ds
= β sin v + 2hc cos v sin v. (15)

Each set of equations (14) and (15) can be regarded as the Hamiltonian systems given by
Ku and Kv , respectively. The singularities in the elliptic coordinate system (ξ, η, pξ , pη) are
removed in (14) and (15). The canonical transformation (x, y, px, py) to (u, v, pu, pv) is
expressed as a composition of two canonical transformations (4) and (11), that is

u = cosh−1 ξ, v =
{

cos−1 η, y � 0,

2π − cos−1 η, y < 0,

pu = px sinh u cos v + py cosh u sin v, (16)

pv = −px cosh u sin v + py sinh u cos v.

The inverse transformation of (16) is as follows:

x = cosh u cos v, y = sinh u sin v,

px = pu cos v sinh u − pv cosh u sin v

cosh2 u − cos2 v
, (17)

py = pu sin v cosh u + pv sinh u sin v

cosh2 u − cos2 v
.

3. Discrete two-fixed-centres problem

In the previous section, we have reduced 2FCP to two one-degree-of-freedom Hamiltonian
systems through the canonical transformation (7). One is the Hamiltonian system (14) with
the Hamiltonian Ku and the time variable s. The other is the Hamiltonian system (15) with
the Hamiltonian Kv and the time variable s.
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We apply the energy-preserving method [3, 4, 7] to the Hamiltonian system (14), (15).
The following discrete system results:

�+su
(j) = 1

2

(
p(j+1)

u + p(j)
u

)
,

�+sp
(j)
u = (hc(cosh u(j+1) + cosh u(j)) − α)

cosh u(j+1) − cosh u(j)

u(j+1) − u(j)
, (18)

s(0) < s(1) < · · · , j = 0, 1, 2, . . . ,

where u(j) and p
(j)
u are the values of discrete canonical variables at the discrete time s(j).

A forward difference operator �+s acting on a function f
(
x

(j)

1 , x
(j)

2 , . . . , x
(j)
m

)
is defined as

follows:

�+sf
(
x

(j)

1 , x
(j)

2 , . . . , x(j)
m

) def= f
(
x

(j+1)

1 , x
(j+1)

2 , . . . , x
(j+1)
m

) − f
(
x

(j)

1 , x
(j)

2 , . . . , x
(j)
m

)
s(j+1) − s(j)

. (19)

Here x
(j)

1 , x
(j)

2 , . . . , x
(j)
m , are functions of the discrete time s(j) The discrete system (18)

conserves the Hamiltonian Ku. It converges to the continuous canonical equations (14) at the
limit of s(j+1) − s(j) → 0, j = 0, 1, 2, . . . . Note that this method allows a variable step size.

Similarly, the Hamiltonian system (15) with the Hamiltonian Kv can be discretized with
the energy-preserving method. By introducing discrete canonical variables v(j), p

(j)
v , j =

0, 1, 2, . . . , we get the discrete Hamiltonian system

�+sv
(j) = 1

2

(
p(j+1)

v + p(j)
v

)
,

�+sp
(j)
v = −(hc(cos v(j+1) + cos v(j)) + β)

cos v(j+1) − cos v(j)

v(j+1) − v(j)
, (20)

s(0) < s(1) < · · · , j = 0, 1, 2, . . . .

This discrete system has Kv as a constant of motion. It converges to the Hamiltonian
system (15) at the limit of s(j+1) − s(j) → 0.

We define a new discrete time variable t (j) by

t (j+1) − t (j) ≡ (cosh2 u(j) − cos2 v(j))(s(j+1) − s(j)), j = 0, 1, 2, . . . . (21)

As cosh u(j) � 1 and −1 � cos v(j) � 1, the discrete time t (j) satisfies t (0) � t (1) � t (2) � · · ·.
The relationship (21) is a discrete analogue of the time transformation dt = (ξ 2 −η2) ds which
is used to separate the variables of the 2FCP with continuous time variable. Through (21) the
discrete system (18) is transformed into

�+t u
(j) = 1

2

p
(j+1)
u + p

(j)
u

cosh2 u(j) − cos2 v(j)
,

�+tp
(j)
u = hc(cosh u(j+1) + cosh u(j)) − α

cosh2 u(j) − cos2 v(j)
× cosh u(j+1) − cosh u(j)

u(j+1) − u(j)
, (22)

t (0) � t (1) � · · · , j = 0, 1, 2, . . . .

Similarly, the discrete system (20) is transformed into

�+t v
(j) = 1

2

p
(j+1)
v + p

(j)
v

cosh2 u(j) − cos2 v(j)
,

�+tp
(j)
v = −hc(cos v(j+1) + cos v(j)) + β

cosh2 u(j) − cos2 v(j)
× cos v(j+1) − cos v(j)

v(j+1) − v(j)
, (23)

t (0) � t (1) � · · · , j = 0, 1, 2, . . . .
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We also define discrete canonical variables x(j), y(j), p
(j)
x and p

(j)
y derived from the

discrete canonical variables u(j), v(j), p
(j)
u and p

(j)
v through (17). This is a discrete analogue

of the canonical variables x(t(j)), y(t (j)), px(t
(j)) and py(t

(j)) at the discrete time t (j).
When an initial condition (x(0), y(0), p(0)

x , p(0)
y ) is given, we can compute

(
u(0), v(0), p(0)

u ,

p(0)
v

)
from the transformation (16). After determining the values of u(j+1), v(j+1), p

(j+1)
u and

p
(j+1)
v by the discrete systems (22) and (23), we can derive the values of x(j+1), y(j+1), p

(j+1)
x

and p
(j+1)
y through the canonical transformation (17). Therefore, the system (22), (23) turns

out to be a discrete analogue of the 2FCP. We name the discrete system (22), (23) the discrete
2FCP. The discrete 2FCP is a first-order scheme; the energy-preserving method [3, 7] applied
to the separated system (18) and (20) is of second order, while the discrete time-variable
transformation (21) is a first-order approximation.

Note that the set of discrete equations (22) and (23) is an implicit numerical scheme.
They do not, therefore, form one-to-one maps from t (j) to t (j+1). In order to solve the implicit
scheme (22) and (23), we need a relaxation method. The computational cost of solving (22)
and (23) is determined by the number of iterations of the relaxation method, which depends
on how to set an initial guess for a relaxation method. In the numerical experiment of this
paper, we use the following method to calculate the values u(j+1), v(j+1), p

(j+1)
u , p

(j+1)
v at

s(j+1), j = 0, 1, 2, . . . . First, we compute approximate values of u(j+1), v(j+1), p
(j+1)
u , p

(j+1)
v

by using the Euler approximation of the Hamiltonian system (14), (15). Then we set these
approximate values as initial values and calculate u(j+1), v(j+1), p

(j+1)
u , p

(j+1)
v so as to satisfy

(18) and (20) by using a relaxation method, such as Newton’s method.
By using higher order energy-preserving methods (e.g., see [8]), implicit higher order

discrete 2FCPs are obtained. However, we do not argue higher order discrete 2FCPs in this
paper because the order does not affect qualitative behaviour of the discrete 2FCP, which will
be discussed in sections 4 and 5.

4. Constants of motion

The 2FCP with the Hamiltonian (1) has the following two constants of motion [15].

(i) Hamiltonian in (1)

Hc(x, y, px, py) = p2
x

2
+

p2
y

2
− α1

r1
− α2

r2
− hc. (24)

(ii) A constant of motion

I (x, y, px, py) = 1

2
(ypx − xpy)

2 +
p2

x

2
+ x

(
α1

r1
− α2

r2

)
. (25)

These constants are expressed by u, v, pu, pv as follows:

Hc(x, y, px, py) =
[
Ku(u, pu) + Kv(v, pv)

cosh2 u − cos2 v

]
{
u = u(x, y), pu = pu(x, y, px, py)

v = v(x, y), pv = pv(x, y, px, py)

, (26)

I (x, y, px, py) = −[Ku(u, pu)]u=u(x,y),pu=pu(x,y,px ,py)

= [Kv(v, pv)]v=v(x,y),pv=pv(x,y,px ,py). (27)

Therefore, the conservation of Hc and I in Cartesian coordinates (x, y, px, py) is equivalent
to that of Ku and Kv in the separated coordinates (u, v, pu, pv) along with the condition
Ku + Kv = 0. Since the 2FCP is a Hamiltonian system with two degrees of freedom having
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two involutive integrals of motion, the system is integrable in the sense of Liouville–Arnold.
The third constant of motion, which uniquely determines a trajectory in the four-dimensional
phase space, can be obtained by quadrature.

Let us get the third constant J of motion in the coordinate system (u, v, pu, pv). By
choosing two involutive constants of motion Ku + Kv and Ku, the following canonical
transformation can be formed:(

u v

pu pv

)
→

(
s − s0 J

Ku + Kv Ku

)
. (28)

After the transformation (28), Ku + Kv and Ku correspond to canonical momenta, where s is
the time variable and s0, J are constants. The constant J is the third constant of motion, and
is written as

J (u, v, pu, pv) =
∫ ∂(Ku+Kv)

∂pv
du − ∂(Ku+Kv)

∂pu
dv

∂((Ku+Kv),Ku)

∂(pu,pv)

, (29)

where

∂(Ku + Kv,Ku)

∂(pu, pv)

def= det

(
∂(Ku+Kv)

∂pu

∂Ku

∂pu

∂(Ku+Kv)

∂pv

∂Ku

∂pv

)
. (30)

By calculating (30), the constant J leads to

J (u, v, pu, pv) =
∫

du

pu

−
∫

dv

pv

. (31)

From the definition of Ku,Kv, pu and pv are rewritten by u and v as

p2
u = 2(Ku − α cosh u + hc cosh2 u), (32)

p2
v = 2(Kv − β cos v − hc cos2 v). (33)

Then each term in J (u, v, pu, pv) is an indefinite integral with respect to u or v, respectively.
However, the result of the integration is a multivalued function. Unlike other integrals Hc and
I, J does not have an explicit form.

In the case of the discrete 2FCP (22) and (23), an argument about the constants of motion
parallels the continuous case. As the discrete equations (22) and (23) are derived by the
energy-preserving method, they clearly conserve two constants of motion Ku

(
u(j), p

(j)
u

)
and

Kv

(
v(j), p

(j)
v

)
for j = 0, 1, 2, . . . . Because of this conservation and the relationship (27), the

discrete 2FCP (22), (23) preserves the following constants of motion.

(i) A discrete analogue of Hamiltonian

H
(j)

d−c = Hc

(
x(j), y(j), p(j)

x , p(j)
y

)
. (34)

(ii) A discrete analogue of the constant of motion I

I
(j)

d = I
(
x(j), y(j), p(j)

x , p(j)
y

)
. (35)

Moreover, the discrete 2FCP (22), (23) keeps the value of

J
(j)

d
def=

j∑
i=0

(
u(i+1) − u(i)

1
2

(
p

(i+1)
u + p

(i)
u

) − v(i+1) − v(i)

1
2

(
p

(i+1)
v + p

(i)
v

)
)

, j = 0, 1, 2, . . . . (36)
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Actually, the difference of J
(j)

d leads to

J
(j)

d − J
(j−1)

d =
(

�+su
(j)

1
2

(
p

(j+1)
u + p

(j)
u

) − �+sv
(j)

1
2

(
p

(j+1)
v + p

(j)
v

)
)

(s(j+1) − s(j)) = 0 (37)

by applying the discrete 2FCP (22), (23) to (36). Equation (36) converges to the third constant
of motion (31) of the 2FCP as the time step s(j+1) − s(j) approaches 0. Since the discrete 2FCP
has three constants of motion H

(j)

d−c, I
(j)

d , J
(j)

d , its trajectory is uniquely determined, as in the
2FCP.

5. Trajectories of discrete 2FCP

The 2FCP has various types of trajectories according to its initial condition. Cordani [2]
classified these trajectories according to values of the constants of motion hc and I. When
the Hamiltonian hc is negative, the motion of the moving particle is confined within a closed
bounded region in the xy-plane. The region is determined by the values of hc and I.

As we have seen in the previous section, the discrete 2FCP has the same two constants
of motion H

(j)
c and I (j) as the continuous 2FCP. Because of this property, the trajectories of

the discrete 2FCP are restricted within the same region in the xy-plane as those of the 2FCP
in the case hc < 0. This is advantageous to long-time numerical simulations in the sense that
the discrete 2FCP conserves a global characteristic of the original problem.

To begin with, we describe a classification of trajectories in the 2FCP. We assume hc < 0.
The 2FCP (8), (9) expressed by the elliptic coordinates (ξ, η, pξ , pη) are regarded as the
Hamiltonian system with the time variable s and the following Hamiltonian:

K(ξ, η, pξ , pη)
def= Kξ(ξ, pξ ) + Kη(η, pη), (38)

where Kξ(ξ, pξ ) and Kη(η, pη) are given in (6). Set γ as the value of Kξ . Using the initial
values ξ(0) and pξ (0) at t = 0, the following relationship is satisfied:

γ = 1
2 ((ξ(0))2 − 1)(pξ (0))2 + αξ(0) − hc(ξ(0))2. (39)

From (10), (6) reduces as follows:

dτ = dξ√
(ξ 2 − 1)(hcξ 2 − αξ + γ )

,

(40)
dτ = − dη√

(1 − η2)(−hcη2 − βη − γ )
,

where τ(= √
2s) is a new time parameter.

By integrating both sides, we can write ξ and η as elliptic functions of τ . The trajectories
of 2FCP (8), (9) can be classified by the quartic polynomials under the radical sign. We set
two quadratic polynomials, M(ξ) and Z(η), as

M(ξ)
def= hcξ

2 − αξ + γ, (41)

Z(η)
def= hcη

2 + βη + γ. (42)

Note that α = −α1 − α2 , β = α1 − α2, α1 � 0 and α2 � 0 by definition. In (40) the quartic
polynomial must be positive under the time evolution. Since ξ � 1 and −1 � η � 1 by
definition (3), the relationship

M(ξ) � 0, Z(η) � 0 (43)
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Table 1. Classification of trajectories by hc and γ .

Range of ξ (A) (A) (A) (A) (B) (B) (B) (B)
Range of η (a) (b) (c) (d) (a) (b) (c) (d)
Trajectory I I – – II II III IV

is satisfied. The discriminants of M(ξ) = 0 and Z(η) = 0 are (α1 + α2)
2 − 4γ hc and

(α1 − α2)
2 − 4γ hc, respectively. If M(ξ) had complex roots, Z(η) would also have complex

roots. In this case, the condition (43) cannot be satisfied because the highest degree coefficients
of M(ξ) and Z(η) have the same sign. Therefore, M(ξ) always has two real roots. We write
them as

ξ+
def= α +

√
α2 − 4γ hc

2hc

, ξ−
def= α −

√
α2 − 4γ hc

2hc

. (44)

As we assumed hc < 0, ξ− is greater than or equal to ξ+. On the other hand, the root of Z(η)

can be complex. When Z(η) has the real roots η+ and η−, they are

η−
def= −β +

√
β2 − 4γ hc

2hc

, η+
def= −β −

√
β2 − 4γ hc

2hc

(45)

and η− � η+. The variable ξ is in the range where ξ � 1 and ξ+ � ξ � ξ−. According to the
values of ξ+ and ξ− there are two cases:

(A) 1 � ξ+ � ξ � ξ−,
(B) ξ+ � 1 � ξ � ξ−.

Similarly, the variable η is in the range where −1 � η � 1 and ‘η � η+ or η � η−’. According
to the values of η+ and η− there are four cases:

(a) −1 � η � 1 (complex roots),
(b) −1 � η � 1 � η+ � η−,
(c) −1 � η � η+ � 1 � η−,
(d) −1 � η � η+ or η− � η � 1.

The variable ξ indicates the sum of distances from the two fixed particles, and η indicates
their difference. The curves ξ = const. are ellipses with foci at (1, 0) and (−1, 0), and the
curves η = const. are hyperbolas with the same foci. ξ � 1 and −1 � η � 1 cover the whole
xy-plane.

Table 1 shows the classification of the trajectories according to the ranges of ξ and η.
Four types of trajectories, from case I to case I-.1emV, exist. The pairs (A)–(c) and (A)–(d)
cannot be satisfied for any combination of hc and γ .

Case I. In the areas (A)–(a) and (A)–(b), we have ξ+ � ξ � ξ− and −1 � η � 1. The
particle moves in the closed region bounded by the two ellipses ξ = ξ+ and ξ = ξ−.

Case II. In the areas (B)–(a) and (B)–(b), we have 1 � ξ � ξ− and −1 � η � 1. The
particle moves in the closed region bounded by the ellipse ξ = ξ−.

Case III. In the areas (B)–(c), we have 1 � ξ � ξ− and −1 � η � η+. The particle moves
in the closed region bounded by the ellipse ξ = ξ− and the hyperbola η = η+.

Case IV. In the areas (B)–(d), we have 1 � ξ � ξ− and ‘−1 � η � η+ or η− � η � 1’.
The particle moves in the closed region bounded by the ellipse ξ = ξ− and one of the
hyperbolas η = η+ or η = η−. Although the two possibilities exist, the initial condition
determines which motion appears.

In the next place, we discuss the discrete 2FCP. We set the same initial discrete time
s(0) = 0 and initial condition

(
x(0), y(0), p(0)

x , p(0)
y

) = (x(0), y(0), px(0), py(0)) as the 2FCP
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Figure 1. Case I (the ellipses are ξ = ξ+, ξ−).

has. We define the discrete canonical variables ξ (j), η(j), p
(j)

ξ and p
(j)
η by the following

relationship:

ξ (j) = cosh u(j), η(j) = cos v(j), p
(j)

ξ = p
(j)
u

sinh u(j)
, pη(j) = − p

(j)
v

sin v(j)
,

(46)

which parallels the canonical transformation (11) of the 2FCP. Naturally, ξ (j) � 1,
−1 � η(j) � 1, j = 0, 1, 2, . . . . The discrete 2FCP preserves the same constants of motion
Ku

(
u(j), p

(j)
u

)
and Kv

(
v(j), p

(j)
v

)
as the 2FCP. Set γ as the value of Ku

(
u(j), p

(j)
u

)
. The

following identities are satisfied:

(
p

(j)

ξ

)2 = 2
hc(ξ

(j))2 − αξ(j) + γ

(ξ (j))2 − 1
� 0, (47)

(
p(j)

η

)2 = −2
hc(η

(j))2 + βη(j) + γ

1 − (η(j))2
� 0. (48)

As both (ξ (j))2 − 1 and 1 − (η(j))2 are positive, the two inequalities M(ξ(j)) � 0 and
Z(η(j)) � 0 are given. Using these inequalities, we get the same classification of the
trajectories of the discrete 2FCP as those of the 2FCP.

The above discussion shows that, when hc < 0, the trajectories of the discrete 2FCP are
restricted within the same region as those of the 2FCP. In the case where hc � 0, we can study
the time evolution of the discrete 2FCP in a similar way.

We get the trajectory of the discrete 2FCP in every case from I to IV. Figures 1–4 give
the trajectories in the xy-plane. In these figures the solid curves are ellipses or hyperbolas
that define the region in which the moving particle is confined. Two black circles indicate the
position of the fixed particles. We give µ = 0.6 and s(j+1) − s(j) = 0.05, j = 0, 1, . . . . The
number of iterations is N = 500. In each figure we set the initial condition as follows:

Figure 1: case I
(
x(0), y(0), p(0)

x , p(0)
y

) = (−3.0, 3.0,−0.5,−0.2),
Figure 2: case II

(
x(0), y(0), p(0)

x , p(0)
y

) = (0.0, 1.0, 0.5, 0.0),
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Figure 2. Case II (the ellipse is ξ = ξ−).
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Figure 3. Case III (the ellipse is ξ = ξ− and the hyperbola is η = η−).

Figure 3: case III
(
x(0), y(0), p(0)

x , p(0)
y

) = (−3.0, 1.0, 0.5, 0.1),
Figure 4: case IV

(
x(0), y(0), p(0)

x , p(0)
y

) = (−1.0, 1.0,−0.5, 0.0).

We observe that the trajectory of the discrete 2FCP lies within the regions determined by the
values hc and γ .

Since the discrete system (18) has no singularities, the values of u(j) and p
(j)
u do not

overflow. However, the discrete fictitious time step s(j+1) − s(j) includes a singularity because
(21) is rewritten as

s(j+1) − s(j) = t (j+1) − t (j)

(cosh2 u(j) − cos2 v(j))
= t (j+1) − t (j)

r1r2
. (49)

If t (j+1) − t (j) is constant, s(j+1) − s(j) becomes greater as the moving particle approaches a
fixed particle. This increases discretization error. Actually, in cases II, III and IV, the distance
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Figure 4. Case IV (the ellipse is ξ = ξ− and the hyperbolas are η = η+, η−).

between the moving and the fixed particles can become infinitesimally small [18]. This causes
an overflow of the value s(j+1) − s(j) and then a loss of accuracy. By setting s(j+1) − s(j)

constant, we can avoid such overflow near the fixed particles. This introduces a variable time
step t (j+1) − t (j) for the discrete 2FCP (23), (22).

6. Numerical results

In this section we compare the discrete 2FCP (18) and (20) with a symplectic integrator
(cf [5, 16]). Symplectic integrators are generally used to simulate Hamiltonian systems
numerically. The symplectic integrator of order 1 is applied to the Hamiltonian system (14)
and (15). Then the following discrete system is given:

�+su
(j) = p(j)

u , �+sp
(j)
u = −α sinh u(j+1) − 2A cosh u(j+1) sinh u(j+1),

�+sv
(j) = p(j)

v , �+sp
(j)
v = β sin v(j+1) − 2A cos v(j+1) sin v(j+1), j = 0, 1, . . . .

(50)

Here the relationship between the fictitious discrete time s(j) and the discrete time t (j) is given
by (21). We set s(j+1) − s(j) constant for every j = 0, 1, . . . . The discrete system (50) is an
explicit scheme, and is regarded as a discrete analogue of the 2FCP.

Although symplectic integrators do not conserve the Hamiltonian, they are known to
conserve an approximate Hamiltonian [5, 16]. The system (50) keeps the values of the
following K̃

(j)
u , K̃

(j)
v :

K̃(j)
u = K(j)

u +
δ

2

(
∂Ku

∂u

)(j) (
∂Ku

∂pu

)(j)

+ O(δ2)

= K(j)
u +

δp
(j)
u

2
(α sinh u(j) + 2A cosh u(j) sinh u(j)) + O(δ2), (51)

K̃(j)
v = K(j)

v +
δ

2

(
∂Kv

∂v

)(j) (
∂Kv

∂pv

)(j)

+ O(δ2)
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Figure 5. Relative errors of Hc + hc and I.

= K(j)
v +

δp
(j)
v

2
(−β sin v(j) + 2A cos v(j) sin v(j)) + O(δ2),

δ
def= s(j+1) − s(j), j = 0, 1, 2, . . . , (52)

where K̃
(j)
u and K̃

(j)
v are discrete analogues of Ku and Kv , respectively. Equation (27) shows

that the constant −Ku is the very constant I of the 2FCP. Consequently, −K̃
(j)
u is seen as the

discrete analogue Ĩ (j) which goes to the constant I of the 2FCP as s(j+1) −s(j) → 0. Moreover,
the Hamiltonian Hc of 2FCP is expressed as a function of Ku and Kv in (26). We define H̃(j)

as

H̃(j) def= K̃
(j)
u + K̃

(j)
v

cosh2 u(j) − cos2 v(j)
. (53)

Here H̃(j) is a discrete analogue of Hc of the 2FCP. As the time step s(j+1) − s(j) is constant
and the following relationship holds

K̃
(j)
u + K̃

(j)
v

s(j+1) − s(j)
= H̃(j)(t (j+1) − t (j)), (54)

H̃(j)(t (j+1) − t (j)) leads to a constant. So the symplectic integrator has a constant of motion
H̃(j)(t (j+1) − t (j)), which is a discrete analogue of Hdt of the 2FCP.

Figure 5 shows the relative errors of Hc + hc and I given by the discrete 2FCP
and the symplectic integrator, respectively. The solid lines indicate the discrete 2FCP,
and the dotted lines indicate the symplectic integrator. We set the initial condition as(
x(0), y(0), p(0)

x , p(0)
y

) = (−3.0, 3.0,−0.5,−0.2) and µ = 0.6, which corresponds to case I

of the previous section. We put the constant time step δ
def= s(j+1) −s(j) = 0.01 and the number

of iteration N = 3000. We use Maple to implement floating point operations of the numerical
schemes. We set ten significant digits in the decimal system. The greatest possible round

error caused by one floating point operation is ε
def= 1

2 × 10−9. The discrete 2FCP gives the
relative error of Hc + hc and I smaller than 3000ε = 3

2 × 10−6 after 3000 steps. This confirms
that the discrete 2FCP conserves Hc and I. On the other hand, the symplectic integrator does
not exactly conserve Hc and I.

Figure 6 presents the trajectory given by the symplectic integrator (50) in the xy-plane.
We set the same initial condition (x(0), y(0), p(0)

x , p(0)
y ) = (−3.0, 3.0,−0.5,−0.2), µ = 0.6,

s(j+1) − s(j) = 0.05 and N = 500 as figure 1 in the previous section. Since the symplectic
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Figure 6. Time evolution by the symplectic integrator (the ellipses are ξ = ξ+, ξ−).
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Figure 7. Time evolution by a new integrator (step sizes δ = 0.01, 0.1, 0.2).

integrator does not conserve Hc and I, the trajectory does not stay in the bounded region
framed by the two solid-line ellipses.

Figure 7 presents the trajectories of the discrete 2FCP with different step sizes δ. The bold,
solid and dotted lines are the trajectories with the time step δ = 0.01, 0.1 and 0.2, respectively.
The time interval in the separated system δ × N = 1000 is kept constant. The case δ = 0.01
is closest to the trajectory of the 2FCP. As the time step-size becomes greater, the deviation
from the trajectory of 2FCP increases. This drift seems to stem from a characteristic of the
discrete 2FCP that it conserves only two constants of motion Hc and I while the 2FCP has
three constants of motion Hc, I and J . However, the trajectories of the discrete 2FCP stay in
the closed region bounded by two ellipses.
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7. Conclusion

In this paper we have proposed a numerical integrator for the 2FCP which conserves two
constants of motion. The canonical variables in [18] are introduced to separate the variables,
and then the singularities are removed. Then we discretize the system by applying the energy-
preserving method to each part of the separated Hamiltonian system. As a result, the discrete
2FCP has two constants of motion which have the same form as those of the continuous
system. It is also shown that the discrete 2FCP has an additional constant of motion. This is
a discrete analogue of the 2FCP’s third constant of motion which has an integral form.

Since the discrete 2FCP conserves two constants of motion of the continuous system, the
trajectories of the discrete 2FCP are confined in the same closed bounded region as those of
the 2FCP. As a result, the discrete and continuous 2FCP can be classified in the same way.
This is advantageous to a long-time numerical simulation in the sense that the discrete 2FCP
conserves a global characteristic of the 2FCP. We have conducted a numerical experiment
and have compared the result with that of a symplectic integrator. Time evolution by the
symplectic integrator shows drift from the closed region of the continuous 2FCP. While this
drift can be reduced by introducing higher order symplectic integrators, the discrete 2FCP
is still advantageous when an initial condition is set close to a boundary of two qualitatively
different orbits.

In the last few decades, geometric integration of dynamical systems have become popular
and various properties such as first integrals, symplecticness, reversibility, symmetry or group
structure are utilized to develop novel numerical methods. Conserving several properties
simultaneously is usually costly, or sometimes even impossible. Therefore, one has to choose
an appropriate method to meet his needs. This paper concentrates on the constants of motion of
the two-fixed-centres problem, and the proposed method conserves unique geometric property
that the continuous system has.
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